Mathematics 1A, Fall 2010 - M. Christ
 Practice Midterm Exam \#2

Show work and/or reasoning where indicated. Draw boxes around your final answers to receive credit.
(1) Calculate $f^{\prime}(x)$, using any method from this course. Show your steps.
(1a) $f(x)=x^{\ln (x)}$
(1b) $f(x)=\sqrt{\arcsin (x)}$
(1c) $f(x)=x^{-2} e^{3 x}$
(1d) If $x^{4}-3 x y+2 y^{3}=12$, find $d y / d x$ when $(x, y)=(2,1)$.
(2) Evaluate the following limits. Show each of your steps clearly, but you need not justify those steps in words.
(2a) $\lim _{x \rightarrow \infty} \frac{x^{1 / 3}}{\ln (x)}$
(2b) $\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}$
(3a) Find the maximum value of $f(x)=x(x-3)^{2}$ on $[-1,5]$, and determine all points in this interval where that value is attained. You may use: $f^{\prime}(x)=3(x-1)(x-3)$. Show all steps; you will be graded on these steps, not merely on your answer.
(3b) If x and y are positive numbers and $x y^{2}=3$, what is the minimum possible value of $9 x+y$? Show your steps.
(4) Short answer questions.
(4a) Define: The graph of f has a slant asymptote as $x \rightarrow-\infty$.
(4b) Suppose that f and f^{\prime} are differentiable functions on an interval $(a, b), c \in(a, b)$, and $f^{\prime}(c)=0$. What can one conclude if $f^{\prime \prime}(c)>0$? What if $f^{\prime \prime}(c)=0$? (Answer both questions.)
(4c) Let $f(x)=e^{x}$. What is the equation for the linearization (also known as the linear approximation) of f at 3 ?
(5) Show that if $x>1$, then $\ln (x)<x-1$.

